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Abstract
The Casimir effect giving rise to an attractive force between the configuration
boundaries that confine the massless scalar field is rigorously proved for an odd
dimensional hypercube with the Dirichlet boundary conditions and different
spacetime dimensions D by the Epstein zeta function regularization.

PACS numbers: 04.62.+v, 03.65.Ge

In 1948 Casimir calculated an extraordinary property that two uncharged metallic plates would
have an attractive force in vacuum [1]. This force is a strong function of a and is measurable
only for a < 1 µm [2]. Boyer [3], who numerically calculated the Casimir force of a thin
spherical shell, found that the sphere tends to be expanded. By using the mean approximation,
the stresses are directed outwards for a cubic cavity, which tend to expand the cavity [4].
Therefore, one may imagine the spherical shell to be deformed into a cubic shell, and expect
that this deformation does not change the resulting stresses. It is interesting to note that the
Casimir force of a massless scalar field may be repulsive for p-odd cavity with unequal edges
[5]. On the other hand, few physicists would nowadays argue against the statement that the
zeta function regularization procedure has proven to be a very powerful and elegant technique.
Rigorous extension of the proof of the Epstein zeta function regularization has been obtained
[6]. The generalized zeta function has many interesting applications, e.g., in the piecewise
string [7] and branes [8]. In this paper, we rigorously prove that the Casimir force is attractive
for a p-odd hypercube with the Dirichlet boundary conditions and spacetime dimension D less
than critical value Dc.

A Hermitian massless scalar field φ(t, xa, xT ) is confined to the interior of (D − 1)-
dimensional rectangular cavity � with p edges of finite lengths L1, L2, . . . , Lp and D −
1 − p edges with characteristic lengths of order λ � La where i = 1, . . . ,D − 1; a =
1, . . . , p; T = p + 1, . . . , D− 1. We consider the case of Dirichlet boundary conditions, i.e.,
φ(t, xa, xT )|∂� = 0. The Casimir energy density is [5]

εDp (L1, L2, . . . , Lp) = −π(D−p)/2
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where the Epstein zeta function Ep(a1, a2, . . . , ap; s) is defined as

Ep(a1, a2, . . . , ap; s) =
∞∑
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Assuming L1 = L2 = · · · = Lp = L, equation (1) can be reduced to

εDp (L) = Lp−D
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where the Epstein zeta function A(a1, a2, . . . , ap; s) is defined as
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where the prime means that the term n1 = n2 = · · · = np = 0 has to be excluded.
Using equations (2)–(4) and the Mellin transformation of exp(−bτ)∫ ∞

0
τ s−1e−bτ dτ = b−s�(s) (5)

we have

εDp (L1, L2, . . . , Lp) = Lpε
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and

εDp (L) = Lp−D
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where the elliptic θ function

θ3(0, q) ≡
∞∑

m=−∞
qm2

. (8)

When p = 2j + 1p (j is a positive integer), it is obvious that εDp (L) < 0 for any D, since
θ3(0, e−τ ) > 1 and integrand is always negative between the integration limits. On the other
hand, numerical calculations show that the energy density is positive when p is even and
D � 6 in the p = 2j case [9]. Note that the terminology ‘Casimir force’ for Li direction is in
proportion to the derivative of Casimir energy with respect to Li. We need to study firstly the
behaviour of Casimir energy so as to discuss the nature of Casimir force. We can prove the
following lemmata for the Casimir energy.
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Lemma 1. For two spacetime dimensions D1 and D2, if D2 > D1, and ε
D1
2j (L) � 0, then

ε
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2j < 0.
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which has only one real root 0 < τ 0 < π for any j. Since k(τ ) > 0 for 0 < τ < τ 0 and
k(τ ) < 0 for τ 0 < τ < ∞, we have
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Lemma 2. There exists a particular spacetime dimension Dc = 6, such that for D � Dc,
εD2 (L) > 0 and for D > Dc, εD2 (L) < 0.

Proof. In the p = 2 case, equation (7) can be reduced to

εD2 (L) = L2−D
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where ζ (r) is the Riemann zeta function and β(r) is the Dirichlet series

β(r) ≡
∞∑
j=0

(−1)j

(2j + 1)r
. (12)

Using these known one-dimensional series, we have ε3
2(L) = 0.04104, ε4

2(L) = 0.00483,
ε5

2(L) = 0.00081, ε6
2(L) = 0.00011 and ε7

2(L) = −1.9 × 10−5 if L is the chosen unit length.
Thus, we show lemma 2 from lemma 1. �

Lemma 3. If j is large enough, then εD2j (L) < 0.

Proof. For τ > 4 π > τ 0, one can easily find

|k(τ )| > pe−τ
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. (13)

From equation (7), we have
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Then, for j large enough, εD2j (L) < 0. �

Lemma 4. If D is large enough, then εD2j (L) < 0 for any j.
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Proof. From equation (7), we have
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Since the first term is positive and the second is negative in the brackets of equation (15), when
D is large enough, εD2j (L) < 0 for any j. �

Lemma 5. The Casimir force of a p-dimensional rectangular cavity with the Dirichlet
boundary conditions can be written in terms of the ( p −1)-dimensional Casimir energy
density and multiseries with exponential factors.

Proof. From the recursion relation of the Casimir energy (density equation (6)), per unit area
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This completes the proof of lemma 5. �

Since the second and the third terms are obviously negative on the right-hand side of
equation (16), the pressure is always negative (directed inwards) if the first term is also negative.
From lemmata 1–4, we show that there exists a critical value of the spacetime dimension Dc

for which εD2j > 0 if D � Dc and εD2j < 0 if D > Dc. However, 2j + 1 > Dc if j > 14.
In this case there is no critical Dc since all εD2j (for D = 2j + 1, 2j + 2, . . .) are negative. We
summarize the above in the following.

Theorem 1. The Casimir effect gives rise to an attractive force between the configuration
boundaries that confine the massless scalar field for a p-odd hypercube with the Dirichlet
boundary conditions and D � Dc, p � 29.
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Table 1. The critical value Dc for massless scalar fields satisfying Dirichlet boundary conditions
inside a hypercube with p-odd unit sides in a D-dimensional spacetime.

p 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Dc 7 9 11 12 14 16 17 19 21 23 24 26 28 30

Furthermore, we show the dependence of the critical value Dc on p in table 1 using
numerical calculation for possible physical application.

Finally, we shall give a brief discussion on our result. In spite of an impressive literature
on the Casimir effect [10], the query whether its attractive or repulsive character changes
by going to higher dimensions had never been elucidated for Dirichlet boundary conditions.
We analytically show that Casimir force of a p-odd hypercube is attractive, in contrast to
the result of [11]. Our result is consistent with numerical calculation [9]. It may be worth
emphasizing that the Epstein zeta function is the fundamental zeta function associated with
higher dimensions.
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